

KDM- As a tool for modernizing Legacy Systems
Amit R. Wasukar

Abstract— The performance of system depends on how it is designed and for what functionality it is developed, but the fact lies in

architecture of the system. Because legacy systems have a complex type of architecture compared to the new age systems. So many a

times handling legacy systems requires more care, otherwise it can lead to improper functioning. To deal with this situation we can use the

concept “Architecture Driven Modernization (ADM)”, the reason for handling this situation is due to the archival information that resides in

legacy systems. ADM is used for modernizing the legacy systems by analyzing its artifacts and through this we can transform the

architecture of the existing system to the new one as per user or organization needs. To make it possible, we can use a specification

provided by ADM called as "knowledge discovery metamodel (KDM)". Knowledge Discovery Metamodel supports many programming

languages because it is an intermediate representation of software artifacts and its operational environment. In this paper we are trying

simplify the intermediate representation of legacy system using KDM with its respective models.

Index Terms — ADM, Artifacts, Architecture, Knowledge, KDM, Legacy systems, Modernization, Architecture Knowledge.

—————————— ——————————

1 INTRODUCTION

he need for transforming old systems into the new sys-
tems is increasing rapidly because of the inventions that
are carried out in this field. Inventions in the sense that

faster systems are build up using latest technology which
wipes out the old technology. But in many cases i.e. in many
organizations, the use of old systems and their respective
work played a vital role, so we cannot remove these systems
directly from the working chamber of organization. The rea-
son for this is the data and information they possess for the
proper functioning of any organization, we can call this in-
formation as “archival type of data”. Legacy systems and old
systems both can be accrediated same and can be used inter-
changeably. The functioning, characteristics and working of
legacy systems are totally different than the ones which are
present today; still they are useful because of the key capabili-
ties they possess. Legacy system can be a application program
or a computer system which are designed to work for some
specific job, also in many situations it is treated as the technol-
ogy or method used for calculating/evaluating some function.
The legacy system may or may not remain in use, even if it is
no longer in use, it may continue to impact the organization’s
functionality due to its historical role data. So there is a need
of some mechanism which helps in converting or modifying
the legacy systems into the new system. As we all know sys-
tems which are building over time are dynamic in nature, be-
cause of the technology they used and for what purpose they
are developed. Technology is the changing wheel of time since
after every random time span it is upgraded or changed, this
also is the main reason for transforming the legacy sytems. But
one can think that why it is given so much importance and
why not replace old system directly with new system, reason
for this is cost and expensiveness attached to it. Another rea-
son is complex architecture of legacy system and insufficient
manpower to understand it i.e., first we have to train the pro-
grammers to understand legacy system architecture and then
again build another system with same functionality. So to

avoid this we can use the modernization technique which
helps in minimizing the cost related with it.
 Architecture is one of the important thing related to the
systems either it is old or new. Complex architecture often
leads to the ambiguous development of system. In different
terminology architecture is defined differently, like theoretical
point, organizational point, software & hardware point, etc. In
this paper we are trying to evaluate the solution for transform-
ing old system architecture into new one. To achieve this there
are many techniques available from which some are old, but
the efficiency of technique is not determined by just observing
that it is old or new, it is judge by the performance and effi-
ciency provided by that technique.
 One thing to note here that architecture related decisions
are the first to be taken into consideration during system de-
velopment and ultimately they virtually affect later stages of
the system development process, also the impact of architec-
tural mistakes results in high economical risk. So to deal with
solution Object Management Group (OMG) invented a
process called as “Architecture Driven Modernization”[3][6],
which is used for understanding and evolving the existing
software artifacts or assets[4]. We will explain what is ADM in
further sections.
 Everyday a new technology/technique is developed
which satisfies the needs of users as well as organizations
there is lack of interdependency between the uses of these
technologies. In fact in many cases it happens that organiza-
tion is ready with updated version of their software with some
improved functions which helps user in many perspectives,
and to use this, user needs to make some exchange operations
with their existing systems, but a section of users does not like
this i.e., it isn’t attract them. Reason for this is the extended
workload imposing on them, so they try to ignore it which
ultimately degrades their system performance as compard to
other competitive organizations software. Form this scenario
we understand that to make users happy we have to come up
with new ideas with some simple trics to modernize their ex-
isting systems. While modernizing the system, main thing we
need to take into account that it does not affect the basic func-
tionality of system.
 So to deal with all this, we can use “Knowledge Discovery

T

————————————————

 Amit R. Wasukar, PG student, Dept. of Computer Engineering, Dr.
B.A.T.University, Lonere, India, PH-+91-9766881927.
E-mail: amitwasukar@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

199

IJSER © 2013
http://www.ijser.org

IJSER

mailto:amitwasukar@gmail.com

MetaModel (KDM)” as an intermediate representation. Today,
many researchers are focusing on this transformation using
different specifications and standards, but the first one which
is standardized by ISO is KDM[1][2]. KDM is a standard in-
vented by OMG under ADM process and mainly used because
it has the capability to seperate between different physical
artifacts related to the system. UML plays an important part in
the modernization process as it is used for modeling purpose.
Modelling is the designing of software applications before
coding.

In further sections we will elaborate the details regarding
the modernization of existing systems i.e., legacy systems. In
section 3 we see what is mean by architecture of software sys-
tem and introduction to Legacy systems. In section 5 we try to
explain what is KDM and its representation, in section 6 mod-
ernization process is explained and finally we conlude the
paper with future work.

2 SOFTWARE ARCHITECTURE AND LEGACY SYSTEMS

In todays world the need for making the systems more agile
and exible is increasing rapidly with the intent of interopera-
bility, language independant and platform indepenant. There
are existing systems which plays a vital role in organizations
growth though they are old. The functioning, characteristics,
working and complexity of these systems are totally different
than the ones which are present today; still they are useful
because of the capabilities they possess. One of the reasons for
their dissimilarity is the"Architecture" they use. These systems
can be called as "Legacy Systems". The legacy system may or
may not remain in use even if it is no longer used, it may con-
tinue to impact the organization due to its historical role. The
data that resides and processed through Legacy systems is
archival type of data that can not be directly used and
processed in the modern systems. A legacy system may in-
clude procedures or terminology which are no longer relevant
in the current context, and may hinder or confuse understand-
ing of the methods or technologies used.
 Software architecture is helpful in deriving the important
and useful characteristics of software system along with its
functionality. When we define any architecture we must take
into account that the requirements should be fullfiled and
there is a scope for modernizing that architecture. In many
cases the conflict arises because of amibiguity of required ar-
chitecture due to which designers and programmers fell short
to implement the needed software. In terms of IT it is a set of
structures required to explain about the software system,
which comprise software elements, the relations between
them, and the properties of both elements and relations. OR it
is the conceptual model that defines the structure, behaviour,
amd views of systems [1][5]. In general, we can term architec-
ture as “the process and product of planning, designing and
construction”. In software development, planning, designing
and construction plays very vital role sice these are the basic
operations involved in software development. In a broad way
architecture of a system is termed as

 The high level structure of a software system
 The way of creating such a high level structure
 Making documentation of such a high level structure

Here we explain what legacy system is and what software
architecture is. The reason behind that software architecture
impacts overall working of the legacy systems and in further
sections we get a clear idea why software architecture and and
why legacy system?

3 ARCHITECTURE DRIVEN MODERNIZATION- ADM

The necessity for modernizing and transforming old systems
is becoming one of the important factors in the organizations.
To deal with this problem Object Management Group (OMG)
has discovered a new concept called as “Architecture Driven
Modernization” (ADM)[6]. ADM is a technique which is help-
ful in making systems architecture more agile also helped in
making platform and language independent systems. Through
ADM we can get a number of advantageous servic-
es/applications like

 Software Improvement
 Interoperability
 Reuse
 Modifications
 Migration
 Translation
 Integration
 Service Oriented Architecture

That is, through these services system maintenance becomes
some what easy. One thing to take into consideration is the
inability of existing systems to cop-up with the changing tech-
nological environment, this many a times reflected into the
progress of organization i.e., it slows down the functioning of
the company. So above activities which collectively define the
basis of ADM can easily overcome the existing systems prob-
lems[3].

In large context ADM is the process of understanding and
working out with existing software assets. ADM is the best
path for moving an Aging System to an Agile System when
used with its best scenarios and standards. ADM is used when
existing IT practices fail to deliver against business objectives.
Business objectives include the competition among organiza-
tions, survival in the market.

ADM is one type of task force which is used by many ven-
dor and user organizations for sharing the tools and analyzing
the meta-data from existing systems environment. ADM de-
fines a standard which isused for the purpose of sharing tools
and artifacts related to existing systems named “Knowledge
Discovery Meta-Model (KDM)”. Mainly ADM helps us to
make systems

 Platform Independent
 Language Independent
 Interoperable

These are the important factors which enables organization
to widely use ADM because today all we need is the faster
executable software systems and we can get it if it satisfies the
above criteria i.e., the system should be platform and language
independant. At any time it is interoperable between different
situations.

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

200

IJSER © 2013
http://www.ijser.org

IJSER

4 KNOWLEDGE DISCOVERY METAMODEL - KDM

As name suggests Knowledge Discovery Metamodel is related
to the knowledge representation of the existing system
through some intermediate representation format. In many
cases i.e., in various organizations it is very important to make
an old system reusable, so that cost for developing new sys-
tems gets reduce. This is because old systems/existing sys-
tems holdlots of archival type of data/information which
plays a vital role in organizations growth.

Knowledge Discovery Meta-Model provides a common in-
terchange format for the interoperability between existing
software systems. KDM is a metamodel which helps us to
represent information associated with existing software sys-
tem, its elements, associations and operational environment.
Because of the common metamodel that KDM provides, each
vendor tool can be able to exchange common views across
platforms and languages for the purpose of analyzing, stan-
dardizing and transforming existing systems[1].

Main reasons for selecting KDM as transforming medium
are vary from application to application because of the diversi-
ty in its development. KDM is standardized by the ISO as one
of the standards provided by ADM. KDM has the capability to
handle different types of language constructs. Like through
KDM we can transform COBOL, C, and PASCAL language
legacy code into the modern language like JAVA. Along with
this it is also possible to modernize C and C++ into Java code
and vice-versa. In process of transformation, first we have to
convert legacy source code into the KDM representation
which is a common interchange format and by using this we
can transform one language legacy system into the other lan-
guage system.
 Taking all these points into consideration if it is possible to
modernize/transform the existing system, we can reduce a
considerable amount of work, cost, manpower, programmers
overhead. Fortunately today we are having some of the better
utilizing equipments, procedures, techniques, tools, methods,
and representations for making this happen as compared to
the old age where not much resources and representations are
available.

4.1 Layered Architecture of KDM

 KDM is represented and understand defined by the layered
architecture which contains different abstraction layers for
different purposes. Each layer is organized and divided by its

functionality and some packages[1].

Fig. 1 Layered Architecture of KDM

The KDM architecture comprises four layers as shown in fig 1;

 Infrastructure Layer
 Program Elements Layer
 Runtime Resource Layer
 Abstraction Layer

4.1.1 Infrastructure Layer
This layer is at the lowest abstraction level, which consists of a
small set of common metamodel elements (such as entity and
relationship) used through entire KDM levels. This layer con-
sists of three packages: Core, KDM and Source.

4.1.2 Program Elements Layer
It represents the code elements and their associations. It con-
sists of a broad set of metamodel elements common between
different programming languages to provide a language inde-
pendent representation. There are two packages in this layer:
Code and Action.

4.1.3 Runtime Resource Layer
It represents higher level knowledge (such as operational en-
vironment) about existing software systems. This kind of
knowledge cannot be extracted from the syntax at code level
but rather from the runtime incremental analysis of the sys-
tem. There are four packages in this layer: Data, Event, UI and
Platform.

4.1.4 Abstraction Layer
It defines a set of metamodel elements for representing do-
main and business specific overview of the system. Extracting
this kind of knowledge involves input from experts and ana-
lysts. Conceptual, Structure and Build are the three packages
present in this layer.

Each layer has its own functioning and working parameters
related to the software architecture modernization. The key
design characteristics of KDM are[1][4]:

1. KDM specifies ontological structure for describing ex-
isting software systems assets.

2. KDM identifies entities in the source code and actual-
ly work as an Entity-Relationship Model.

3. KDM has the capability to capture language specific,
application specific and implementation specific enti-
ties and relationships.

4. KDM models are composable since it is possible to
group many entities into one container to represent
one single entity.

4.2 Packages in KDM

KDM contains 12 packages, each package is designed by one
or more class diagrams and defines a set of metamodel ele-
ments whose purpose is to represent a certain independent
facet of knowledge related to existing software systems. These
packages are shown in fig.1, we can enlist and categories them
with respect to their layers. From these packages not all are
important; the packages which are useful are Source, Code,
Action, Data, Event, UI and Platform. The reason behind this
is functioning they can perform[1]. We explain only these
packages and analyse them next sections.

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

201

IJSER © 2013
http://www.ijser.org

IJSER

4.2.1 Source Package
This model identifies and recites the physical artifacts of a leg-
acy system (like source files, images, configuration files, re-
source files, and so on) as KDM entities and defines a mechan-
ism to link those KDM entities and their original representa-
tion in the legacy source code, for which the KDM representa-
tion was created.
Defines Inventory Model Of KDM Source Package.

4.2.2 Code Package

The code package defines a set of CodeItem elements that
represents the common named elements in the source code
supported by different programming languages such as data
types, classes, procedures, methods, templates and interfaces.
Defines CodeModel Of KDM Code Package.

4.2.3 Action Package

The action package extends the code model by means of more
metamodel elements that represent behavior descriptions,
control and dataflow relationships between code elements.
The action package adds two key elements: the ActionElement
and the AbstractActionRelationship. The ActionElement me-
tamodel element depicts a basic unit of behavior and
represents some programming language constructs such as
statements, operators and conditions. The AbstractActionRela-
tionship usually represents the use of a name in a statement.
Defines Code Model Of KDM Action Package.

4.2.4 Data Package

The data package defines the representation of several data
organization capabilities. This representation is related to the
persistent data aspects of a legacy system. Therefore, this
package makes it possible to represent complex data reposito-
ries like relational databases, record files and XML schemas
and documents.

4.2.5 Event Package

The event package defines a set of metamodel elements for
representing state and state transitions caused by events. This
package represents two kinds of states:

 concrete states that are explicitly supported by specif-
ic state machine based languages and

 Abstract states related to a specific algorithm, re-
source or user interface.

4.2.6 UI -User Interface Package
The UI package provides metamodel elements for
representing the resources related to user interface aspects,
such as their composition, their sequence of operations and
their relationships to the legacy systems.

4.2.6 Platform Package
The platform package defines artifacts related to the runtime
platform and environment of a legacy system such as inter
process communication, the use of registries, the management
of data, and so on. The platform metamodel elements depict
the execution context of the legacy code, since a legacy system
is not only determined by the programming language of the
source code, but also by the selected runtime platform.

5 KDM TRANSFORMATION AND REPRESENTATION FOR

LEGACY SOURCE CODE

KDM’s purpose is to define and illustrate a standard for
representing software systems and information systems like
representing software artifacts which includes source code,
user interface, database, image files, configuration files, binary
files, etc. KDM works in a bottom up manner i.e., first we ana-
lyse the source code of legacy system and from that we create
a KDM representation; we can show it by explaining following
example. In this diagram we define simple language code hav-
ing a class, named Paper with data member ‘test’ which is
integer data type and a member function ‘avg’ with float data
type.

Fig. 2 Source Code Example (Class example)
 Now, here comes the main idea of paper, suppose we have

legacy source code of thousands LOC written in any language
and it is very much needful for the organization to use it
properly but in many cases it happened that new age pro-
grammers and analysts are incapable to understand this code
or they may required much more to grasp this, so to minimize
this task we can use KDM. KDM is used as an intermediate
representation of the legacy software system with common
interchange format. Figure 3 shows KDM representation de-
rives from UML as UML is a meta-modeling language.

Fig. 3 KDM representation separating its artifacts

From above diagram we get the idea that KDM is capable for
evaluating different physical artifacts related to the software
system. If we look at our example then some of the artifacts
extracted are classes, methods, datatypes present in the code,
i.e., we can clearly understand thewhat is class name, what are
its different member functions with its datatypes, which are
data members used to store values. So programmers can di-
rectly analyze the source code by looking into the KDM repre-
sentation and easily modernize it according to specified re-
quirements. By this, many things can reduce i.e., cost for ana-
lyzation, headache for programmers, time for organization to
sustain in the market. Therefore it is easy to transform the leg-
acy code into the new language code by simply analyzing its
artifacts related to the specific target language.

class Paper {
 int test;
 float avg() {…… }
 }

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

202

IJSER © 2013
http://www.ijser.org

IJSER

5.1 Basics for Transformation of Legacy Source Code
Using KDM

Our concept is to modernize the legacy source code into the
new one using KDM representation and to achieve that many
viewpoints should be taken into consideration.
Goal - Legacy systems should be transformed/modernize into
the Target system.
Method – Use KDM as a common interchange format for ex-
tracting the physical artifacts of legacy software system.
For modernization purpose we take a simple source code writ-
ten in java and represent it in KDM format so that we can ana-
lyse its artifacts.

5.1.1 Legacy Source Code

Fig. 4 Legacy Source Code

5.1.2 KDM Representation
From above code we can get KDM representation as shown in
figure 5. It depicts the basic information regarding the source
code.

fig. 5 KDM epresentation
As there is no image files or binary files present so no need of
inventory model. Code model gives us details about data-
types, member functions, packages, etc present in the code.
And through this we can easily modernize program code into

another language code with its proper functioning. Here we
are not explaining all the working in detail because it is out of
scope of this paper.

Therefore by we can modernize the legacy system to new
system KDM representation and it is a concept for doing this,
still this concept needs some more acceptance and observa-
tions. In next section we just introduce the concept of moder-
nization process used by KDM for transformation purpose.

6 MODERNIZATION PROCESS

Normally modernization starts where existing organizations
fails to do deliver against its requirements. The factors that fall
short include new application development, application inte-
gration and maintenance of applications. Modernization helps,
essay and discovers the refactoring, redesign and redeploy-
ment of vital application architectures for meeting critical
business requirements to lowers risks, costs and delivery time-
frames. Modernization backs many standard scenarios like:

 Application quality improvement
 Portfolio management
 Source to source coversion
 Platform migration
 Application and System integration
 Service oriented architecture
 Model driven architecture

When we convert any old thing into the new one we usually
come across many problems in which some are not avoidable,
to deal with this situation a solution must be available. If it is
possible that existing systems or legacy systems can be con-
verted into the modern one with the help of some tool or me-
chanism in a simple way then the cost and time of the users
and organizations can get reduced. In this way we are able to
change state of the old system into the new one, this concept
can be called as the "Modernization".
Here we trying to modernize the legacy systems with the help
of KDM which is a standard specification defined under ADM
which is introduced by Object Management Group (OMG).
The process for modernization can be understood by follow-
ing diagram.

Fig. 6 Modernization Process for Legacy Systems

As shown in figure, we have two systems in hand first one is
the “Legacy System/Existing System” which we have to mod-
ernize and second one is “New System” to which we have to
modernize. We can understand from diagram that both sys-
tems use the database but each have its own version, compati-

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

203

IJSER © 2013
http://www.ijser.org

IJSER

bility and uses. If we want to transform/modernize the system
then all the factors related to system should be taken into con-
sideration, like which language is used, what is the relation-
ship between entities and its elements, what platform is used
by the system (either for old system or for modernize system)
and what are the characteristics they possess to work or func-
tion properly. Now by observing the above diagram one thing
is clear that modernization process needs to take into account
the various factors associated with it.

 Relationship & Elements
 Characteristics
 Platform
 Language Used

By using this process it becomes easy to modernize the leg-
acy system with some major/minor changes done in the KDM
representation of both systems.

7 CONCLUSION

By making the legacy systems, old systems usable or workable
with some minor, limited changes to its artifacts and architec-
ture, then many things will get easy for organization’s devel-
opment and user also. To achieve this KDM can play a vital
role because of its functionality. KDM is developed under
ADM which is a technique used for modernization of the sys-
tem. By using KDM we can analyse the architecture of legacy
system and further we are able to extend it to the web based
application system. The layer organization of the metamodel
of the KDM standard enables knowledge representation of all
the software artifacts (source code, databases, user interfaces,
business rules, etc.). KDM helps us to extract the various arti-
facts related to the system from analyzing its source code and
then can be represented in its own form which is one type of
common interchange format. The knowledge recovered from
legacy systems and represented in KDM models can be shared
by different modernization tools according to the KDM eco-
system. KDM includes various models for various operations;
all these models have their own functionality with respect to
the code. By knowing all the artifacts from source code we
can made changes to it easily and today market needs this
type of transformation to make organization’s competition
sustain, alive and ultimately this will be benefited to the
growth of organization and users also.

REFERENCES

[1] Ricardo Prez-Castillo, Ignacio Garca-Rodrguez de Guzmn and Mario

Piattini, "Knowl-edge Discovery Metamodel-ISO/IEC 19506: A stan-

dard to modernize legacy systems", Alarcos Research Group, Univer-

sity of Castilla-La Mancha, Pdela Universi-dad, 413071, Ciudad Real,

Spain

[2] Information technology - Architecture-Driven Modernization, OMG.

Architecture-Driven Modernization (ADM) / Knowledge Discovery

Meta-model (KDM) 1.2 Specification. on (ADM): Knowledge Discov-

ery Meta-Model(KDM)

[3] William M. Ulrich, “Architecture Driven Modernization 101: Con-

cepts, Strategies & Justification", Tactical Strategy Group, Inc.,

www.systemtransformation.com

[4] W. Ulrich.(2004), “A status on OMG Architecture-Driven Moderniza-

tion task force," In Proceedings EDOC Workshop on Model-Driven

Evolution of Legacy Sys-tems (MELS), Monterey, USA [IEEE Com-

puter Society Digital Library].

[5] OMG document, “Architecture-Driven Modernization (ADM):

Knowledge Discovery Meta-Model (KDM)”,

http://www.omg.org/spec/KDM/1.1

[6] ADM whitepaper, “Why do we need standards for the moderniza-

tion of existing systems?”, OMG ADM Task Force

[7] Ga¨etan Deltombe Netfective Technology Software 32, avenue

L´eonard deVinci 33600 – Pessac, France g.deltombe@netfective.com

Olivier LeGoaer, Franck Barbier University of Pau Avenue de

l’universit´e,Pau, France folivier.legoaer, franck.barbierg@univ-

pau.fr ,” Bridging KDM and ASTM for Model-Driven Software Mod-

ernization”

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

204

IJSER © 2013
http://www.ijser.org

IJSER

http://www.omg.org/spec/KDM/1.1
mailto:g.deltombe@netfective.com
mailto:franck.barbierg@univ-pau.fr
mailto:franck.barbierg@univ-pau.fr

	1	Introduction
	2 Software Architecture and Legacy Systems
	3 Architecture Driven Modernization- ADM
	4 Knowledge Discovery Metamodel - KDM
	4.1 Layered Architecture of KDM
	4.2 Packages in KDM

	5 KDM Transformation And Representation for Legacy Source Code
	5.1	Basics for Transformation of Legacy Source Code Using KDM

	6	Modernization Process
	7 Conclusion
	By making the legacy systems, old systems usable or workable with some minor, limited changes to its artifacts and architecture, then many things will get easy for organization’s development and user also. To achieve this KDM can play a vital role because of its functionality. KDM is developed under ADM which is a technique used for modernization of the system. By using KDM we can analyse the architecture of legacy system and further we are able to extend it to the web based application system. The layer organization of the metamodel of the KDM standard enables knowledge representation of all the software artifacts (source code, databases, user interfaces, business rules, etc.). KDM helps us to extract the various artifacts related to the system from analyzing its source code and then can be represented in its own form which is one type of common interchange format. The knowledge recovered from legacy systems and represented in KDM models can be shared by different modernization tools according to the KDM ecosystem. KDM includes various models for various operations; all these models have their own functionality with respect to the code. By knowing all the artifacts from source code we can made changes to it easily and today market needs this type of transformation to make organization’s competition sustain, alive and ultimately this will be benefited to the growth of organization and users also.
	References

